363 research outputs found

    Hemodynamic Environments from Opposing Sides of Human Aortic Valve Leaflets Evoke Distinct Endothelial Phenotypes In Vitro

    Get PDF
    The regulation of valvular endothelial phenotypes by the hemodynamic environments of the human aortic valve is poorly understood. The nodular lesions of calcific aortic stenosis (CAS) develop predominantly beneath the aortic surface of the valve leaflets in the valvular fibrosa layer. However, the mechanisms of this regional localization remain poorly characterized. In this study, we combine numerical simulation with in vitro experimentation to investigate the hypothesis that the previously documented differences between valve endothelial phenotypes are linked to distinct hemodynamic environments characteristic of these individual anatomical locations. A finite-element model of the aortic valve was created, describing the dynamic motion of the valve cusps and blood in the valve throughout the cardiac cycle. A fluid mesh with high resolution on the fluid boundary was used to allow accurate computation of the wall shear stresses. This model was used to compute two distinct shear stress waveforms, one for the ventricular surface and one for the aortic surface. These waveforms were then applied experimentally to cultured human endothelial cells and the expression of several pathophysiological relevant genes was assessed. Compared to endothelial cells subjected to shear stress waveforms representative of the aortic face, the endothelial cells subjected to the ventricular waveform showed significantly increased expression of the “atheroprotective” transcription factor Kruppel-like factor 2 (KLF2) and the matricellular protein Nephroblastoma overexpressed (NOV), and suppressed expression of chemokine Monocyte-chemotactic protein-1 (MCP-1). Our observations suggest that the difference in shear stress waveforms between the two sides of the aortic valve leaflet may contribute to the documented differential side-specific gene expression, and may be relevant for the development and progression of CAS and the potential role of endothelial mechanotransduction in this disease.National Institutes of Health (U.S.) (Molecular, Cellular, and Tissue Biomechanics training grant (T32 EB006348))National Institutes of Health (U.S.) (NHLBI RO1-HL7066686)Charles Stark Draper Laboratory (Fellowship

    Normal Mouse Intestinal Epithelial Cells as a Model for the in vitro Invasion of Trichinella spiralis Infective Larvae

    Get PDF
    It has been known for many years that Trichinella spiralis initiates infection by penetrating the columnar epithelium of the small intestine; however, the mechanisms used by the parasite in the establishment of its intramulticellular niche in the intestine are unknown. Although the previous observations indicated that invasion also occurs in vitro when the infective larvae are inoculated onto cultures of intestinal epithelial cells (e.g., human colonic carcinoma cell line Caco-2, HCT-8), a normal readily manipulated in vitro model has not been established because of difficulties in the culture of primary intestinal epithelial cells (IECs). In this study, we described a normal intestinal epithelial model in which T. spiralis infective larvae were shown to invade the monolayers of normal mouse IECs in vitro. The IECs derived from intestinal crypts of fetal mouse small intestine had the ability to proliferate continuously and express specific cytokeratins as well as intestinal functional cell markers. Furthermore, they were susceptible to invasion by T. spiralis. When inoculated onto the IEC monolayer, infective larvae penetrated cells and migrated through them, leaving trails of damaged cells heavily loaded with T. spiralis larval excretory-secretory (ES) antigens which were recognized by rabbit immune sera on immunofluorescence test. The normal intestinal epithelial model of invasion mimicking the natural environment in vivo will help us to further investigate the process as well as the mechanisms by which T. spiralis establishes its intestinal niche

    Quantitative Analysis of the Effect of Cancer Invasiveness and Collagen Concentration on 3D Matrix Remodeling

    Get PDF
    Extracellular matrix (ECM) remodeling is a key component of cell migration and tumor metastasis, and has been associated with cancer progression. Despite the importance of matrix remodeling, systematic and quantitative studies on the process have largely been lacking. Furthermore, it remains unclear if the disrupted tensional homeostasis characteristic of malignancy is due to initially altered ECM and tissue properties, or to the alteration of the tissue by tumor cells. To explore these questions, we studied matrix remodeling by two different prostate cancer cell lines in a three-dimensional collagen system. Over one week, we monitored structural changes in gels of varying collagen content using confocal reflection microscopy and quantitative image analysis, tracking metrics of fibril fraction, pore size, and fiber length and diameter. Gels that were seeded with no cells (control), LNCaP cells, and DU-145 cells were quantitatively compared. Gels with higher collagen content initially had smaller pore sizes and higher fibril fractions, as expected. However, over time, LNCaP- and DU-145-populated matrices showed different structural properties compared both to each other and to the control gels, with LNCaP cells appearing to favor microenvironments with lower collagen fiber fractions and larger pores than DU-145 cells. We posit that the DU-145 cells' preference for denser matrices is due to their higher invasiveness and proteolytic capabilities. Inhibition of matrix proteases resulted in reduced fibril fractions for high concentration gels seeded with either cell type, supporting our hypothesis. Our novel quantitative results probe the dynamics of gel remodeling in three dimensions and suggest that prostate cancer cells remodel their ECM in a synergistic manner that is dependent on both initial matrix properties as well as their invasiveness

    Bacillus Calmette-Guérin Induces PD-L1 Expression on Antigen-Presenting Cells via Autocrine and Paracrine Interleukin-STAT3 Circuits

    Get PDF
    Bacillus Calmette-Guérin (BCG) is the only licensed vaccine for tuberculosis (TB), and is also used as an immunotherapy for bladder cancer and other malignancies due to its immunostimulatory properties. Mycobacteria spp., however, are well known for their numerous immune evasion mechanisms that limit the true potential of their therapeutic use. One such major mechanism is the induction of programmed death ligand-1 (PD-L1), which mitigates adaptive immune responses. Here, we sought to unravel the molecular pathways behind PD-L1 up-regulation on antigen-presenting cells (APCs) by BCG. We found that infection of APCs with BCG induced PD-L1 up-regulation, but that this did not depend on direct infection, suggesting a soluble mediator for this effect. BCG induced potent quantities of IL-6 and IL-10, and the downstream transcription factor STAT3 was hyper-phosphorylated. Intracellular analyses revealed that levels of PD-L1 molecules were associated with the STAT3 phosphorylation state, suggesting a causal link. Neutralisation of the IL-6 or IL-10 cytokine receptors dampened STAT3 phosphorylation and BCG-mediated up-regulation of PD-L1 on APCs. Pharmacological inhibition of STAT3 achieved the same effect, confirming an autocrine-paracrine cytokine loop as a mechanism for BCG-mediated up-regulation of PD-L1. Finally, an in vivo immunisation model showed that BCG vaccination under PD-L1 blockade could enhance antigen-specific memory CD4 T-cell responses. These novel findings could lead to refinement of BCG as both a vaccine for infectious disease and as a cancer immunotherapy

    Platelet Function in Acute Experimental Pancreatitis

    Get PDF
    Acute pancreatitis (AP) is characterized by disturbances of pancreatic microcirculation. It remains unclear whether platelets contribute to these perfusion disturbances. The aim of our study was to investigate platelet activation and function in experimental AP. Acute pancreatitis was induced in rats: (1) control (n = 18; Ringer’s solution), (2) mild AP (n = 18; cerulein), and (3) severe AP (n = 18; glycodeoxycholic acid (GDOC) + cerulein). After 12 h, intravital microscopy was performed. Rhodamine-stained platelets were used to investigate velocity and endothelial adhesion in capillaries and venules. In addition, erythrocyte velocity and leukocyte adhesion were evaluated. Serum amylase, thromboxane A2, and histology were evaluated after 24 h in additional animals of each group. Results showed that 24 h after cerulein application, histology exhibited a mild AP, whereas GDOC induced severe necrotizing AP. Intravital microscopy showed significantly more platelet–endothelium interaction, reduced erythrocyte velocity, and increased leukocyte adherence in animals with AP compared to control animals. Thromboxane levels were significantly elevated in all AP animals and correlated with the extent of platelet activation and severity of AP. In conclusion, platelet activation plays an important role in acute, especially necrotizing, pancreatitis. Mainly temporary platelet–endothelium interaction is observed during mild AP, whereas severe AP is characterized by firm adhesion with consecutive coagulatory activation and perfusion failure

    Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3

    Get PDF
    The restricted bone marrow (BM) localisation of multiple myeloma (MM) cells most likely results from a specific homing influenced by chemotactic factors, combined with the proper signals for growth and survival provided by the BM microenvironment. In analogy to the migration and homing of normal lymphocytes, one can hypothesise that the BM homing of MM cells is mediated by a multistep process, involving the concerted action of adhesion molecules and chemokines. In this study, we report that primary MM cells and myeloma derived cell lines (Karpas, LP-1 and MM5.1) express the chemokine receptor CCR2. In addition, we found that the monocyte chemotactic proteins (MCPs) MCP-1, -2 and -3, three chemokines acting as prominent ligands for CCR2, are produced by stromal cells, cultured from normal and MM BM samples. Conditioned medium (CM) from BM stromal cells, as well as MCP-1, -2 and -3, act as chemoattractants for human MM cells. Moreover, a blocking antibody against CCR2, as well as a combination of neutralizing antibodies against MCP-1, -2 and -3, significantly reduced the migration of human MM cells to BM stromal cell CM. The results obtained in this study indicate the involvement of CCR2 and the MCPs in the BM homing of human MM cells. (C) 2003 Cancer Research UK

    A Dedicated Promoter Drives Constitutive Expression of the Cell-Autonomous Immune Resistance GTPase, Irga6 (IIGP1) in Mouse Liver

    Get PDF
    Background: In general, immune effector molecules are induced by infection. Methodology and Principal Findings: However, strong constitutive expression of the cell-autonomous resistance GTPase, Irga6 (IIGP1), was found in mouse liver, contrasting with previous evidence that expression of this protein is exclusively dependent on induction by IFNc. Constitutive and IFNc-inducible expression of Irga6 in the liver were shown to be dependent on transcription initiated from two independent untranslated 59 exons, which splice alternatively into the long exon encoding the full-length protein sequence. Irga6 is expressed constitutively in freshly isolated hepatocytes and is competent in these cells to accumulate on the parasitophorous vacuole membrane of infecting Toxoplasma gondii tachyzoites. Conclusions and Significance: The role of constitutive hepatocyte expression of Irga6 in resistance to parasites invading from the gut via the hepatic portal system is discussed

    Autophagy Gene Variant IRGM −261T Contributes to Protection from Tuberculosis Caused by Mycobacterium tuberculosis but Not by M. africanum Strains

    Get PDF
    The human immunity-related GTPase M (IRGM) has been shown to be critically involved in regulating autophagy as a means of disposing cytosolic cellular structures and of reducing the growth of intracellular pathogens in vitro. This includes Mycobacterium tuberculosis, which is in agreement with findings indicating that M. tuberculosis translocates from the phagolysosome into the cytosol of infected cells, where it becomes exposed to autophagy. To test whether IRGM plays a role in human infection, we studied IRGM gene variants in 2010 patients with pulmonary tuberculosis (TB) and 2346 unaffected controls. Mycobacterial clades were classified by spoligotyping, IS6110 fingerprinting and genotyping of the pks1/15 deletion. The IRGM genotype −261TT was negatively associated with TB caused by M. tuberculosis (OR 0.66, CI 0.52–0.84, Pnominal 0.0009, Pcorrected 0.0045) and not with TB caused by M. africanum or M. bovis (OR 0.95, CI 0.70–1.30. P 0.8). Further stratification for mycobacterial clades revealed that the protective effect applied only to M. tuberculosis strains with a damaged pks1/15 gene which is characteristic for the Euro-American (EUAM) subgroup of M. tuberculosis (OR 0.63, CI 0.49–0.81, Pnominal 0.0004, Pcorrected 0.0019). Our results, including those of luciferase reporter gene assays with the IRGM variants −261C and −261T, suggest a role for IRGM and autophagy in protection of humans against natural infection with M. tuberculosis EUAM clades. Moreover, they support in vitro findings indicating that TB lineages capable of producing a distinct mycobacterial phenolic glycolipid that occurs exclusively in strains with an intact pks1/15 gene inhibit innate immune responses in which IRGM contributes to the control of autophagy. Finally, they raise the possibility that the increased frequency of the IRGM −261TT genotype may have contributed to the establishment of M. africanum as a pathogen in the West African population

    One step closer to understanding the role of bacteria in diabetic foot ulcers: characterising the microbiome of ulcers

    Get PDF
    Background: The aim of this study was to characterise the microbiome of new and recurrent diabetic foot ulcers using 16S amplicon sequencing (16S AS), allowing the identification of a wider range of bacterial species that may be important in the development of chronicity in these debilitating wounds. Twenty patients not receiving antibiotics for the past three months were selected, with swabs taken from each individual for culture and 16S AS. DNA was isolated using a combination of bead beating and kit extraction. Samples were sequenced on the Illumina Hiseq 2500 platform. Results: Conventional laboratory culture showed positive growth from only 55 % of the patients, whereas 16S AS was positive for 75 % of the patients (41 unique genera, representing 82 different operational taxonomic units (OTU’s). S. aureus was isolated in 72 % of culture-positive samples, whereas the most commonly detected bacteria in all ulcers were Peptoniphilusspp., Anaerococcus spp. and Corynebacterium spp., with the addition of Staphylococcus spp. in new ulcers. The majority of OTU’s residing in both new and recurrent ulcers (over 67 %) were identified as facultative or strict anaerobic Gram-positive organisms. Principal component analysis (PCA) showed no difference in clustering between the two groups (new and recurrent ulcers). Conclusions: The abundance of anaerobic bacteria has important implications for treatment as it suggests that the microbiome of each ulcer “starts afresh” and that, although diverse, are not distinctly different from one another with respect to new or recurrent ulcers. Therefore, when considering antibiotic therapy the duration of current ulceration may be a more important consideration than a history of healed ulcer
    corecore